Git initial commit
This commit is contained in:
commit
3fa54ee52f
32
.gitignore
vendored
Executable file
32
.gitignore
vendored
Executable file
@ -0,0 +1,32 @@
|
|||||||
|
# Prerequisites
|
||||||
|
*.d
|
||||||
|
|
||||||
|
# Compiled Object files
|
||||||
|
*.slo
|
||||||
|
*.lo
|
||||||
|
*.o
|
||||||
|
*.obj
|
||||||
|
|
||||||
|
# Precompiled Headers
|
||||||
|
*.gch
|
||||||
|
*.pch
|
||||||
|
|
||||||
|
# Compiled Dynamic libraries
|
||||||
|
*.so
|
||||||
|
*.dylib
|
||||||
|
*.dll
|
||||||
|
|
||||||
|
# Fortran module files
|
||||||
|
*.mod
|
||||||
|
*.smod
|
||||||
|
|
||||||
|
# Compiled Static libraries
|
||||||
|
*.lai
|
||||||
|
*.la
|
||||||
|
*.a
|
||||||
|
*.lib
|
||||||
|
|
||||||
|
# Executables
|
||||||
|
*.exe
|
||||||
|
*.out
|
||||||
|
*.app
|
674
LICENSE
Executable file
674
LICENSE
Executable file
@ -0,0 +1,674 @@
|
|||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
{one line to give the program's name and a brief idea of what it does.}
|
||||||
|
Copyright (C) {year} {name of author}
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
{project} Copyright (C) {year} {fullname}
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
20
Makefile
Executable file
20
Makefile
Executable file
@ -0,0 +1,20 @@
|
|||||||
|
CC=g++
|
||||||
|
CFLAGS=-Wall -O3 -std=c++11 -fopenmp
|
||||||
|
|
||||||
|
BASESRC=test/debug_cluster.cpp
|
||||||
|
BASEHDR=src/mdimension.hpp src/mmatrix.hpp src/meigen.hpp src/mining.hpp src/learning.hpp src/clustering.hpp
|
||||||
|
BASEOBJ=$(BASESRC:.cpp=.o)
|
||||||
|
BASEFLD=bin
|
||||||
|
BASEEXE=debug_cluster
|
||||||
|
|
||||||
|
all: $(BASESRC) $(BASEEXE)
|
||||||
|
|
||||||
|
$(BASEEXE): $(BASEOBJ)
|
||||||
|
$(CC) $(CFLAGS) $(BASEOBJ) -o $(BASEFLD)/$@
|
||||||
|
|
||||||
|
.cpp.o: $(BASEHDR)
|
||||||
|
$(CC) -c $(CFLAGS) $< -o $@
|
||||||
|
|
||||||
|
clean:
|
||||||
|
find ./test/ -name "*.o" -delete
|
||||||
|
find ./$(BASEFLD) -name $(BASEEXE) -delete
|
17
README.md
Executable file
17
README.md
Executable file
@ -0,0 +1,17 @@
|
|||||||
|
# data-learning
|
||||||
|
Approach for implementing a library concerning data mining (PCA, MDS, etc.), machine learning (Perceptron, SVM, etc.) and clustering (k-means, etc.). Can be used in future projects, for instance in the field of genomic selection.
|
||||||
|
|
||||||
|
In lib-folder, all necessary code files can be found. Using $ ~ make , you can compile the test file from the src-folder.
|
||||||
|
|
||||||
|
Important is to include mmatrix.hpp, the "mathematical matrix" class and clustering, mining or learning.
|
||||||
|
All functions are defined within the scope data_learning::< category >::< class >, e.g. data_learning::clustering::kmeans
|
||||||
|
|
||||||
|
This personal project is being developed in freetime, so at some points there will be many changes, but at some other points in the future, there wont be changes within a few days.
|
||||||
|
|
||||||
|
As of 2021 I start continuing on this project; a plan besides finishing cpu implementation is to get it run on AMD GPUs with OpenCL.
|
||||||
|
|
||||||
|
If there are questions, please feel free to contact me:
|
||||||
|
lhahn@data-learning.de
|
||||||
|
|
||||||
|
Best regards,
|
||||||
|
Lars Hahn
|
BIN
dl_square-1.png
Executable file
BIN
dl_square-1.png
Executable file
Binary file not shown.
After Width: | Height: | Size: 44 KiB |
567
src/clustering.hpp
Executable file
567
src/clustering.hpp
Executable file
@ -0,0 +1,567 @@
|
|||||||
|
#ifndef _CLUSTERING_HPP_
|
||||||
|
#define _CLUSTERING_HPP_
|
||||||
|
|
||||||
|
/*===Libraries================================================================*/
|
||||||
|
#include <algorithm>
|
||||||
|
#include <ctime>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <string>
|
||||||
|
#include <unordered_set>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "mmatrix.hpp"
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
namespace data_learning{
|
||||||
|
/*---clustering-------------------------------------------------------------*/
|
||||||
|
namespace clustering{
|
||||||
|
static bool _Seeded = false;
|
||||||
|
/*---KMeans-Clutering---------------------------------------------------*/
|
||||||
|
template<typename T = double>
|
||||||
|
class kmeans{
|
||||||
|
private:
|
||||||
|
mmatrix<T> _DataMatrix;
|
||||||
|
mmatrix<T> _Prototypes;
|
||||||
|
mmatrix<T> _Assignments;
|
||||||
|
std::size_t _K;
|
||||||
|
static double _Threshold;
|
||||||
|
|
||||||
|
public:
|
||||||
|
kmeans(std::size_t K);
|
||||||
|
kmeans(mmatrix<T> && Mat, std::size_t K);
|
||||||
|
kmeans(mmatrix<T> & Mat, std::size_t K);
|
||||||
|
|
||||||
|
void initial_prototypes(mmatrix<T> & Mat);
|
||||||
|
void data_matrix(mmatrix<T> && Mat);
|
||||||
|
void data_matrix(mmatrix<T> & Mat);
|
||||||
|
void threshold(T thresh);
|
||||||
|
|
||||||
|
double cluster();
|
||||||
|
std::vector<double> clustering(std::size_t Steps = 1e3);
|
||||||
|
|
||||||
|
mmatrix<T> data_matrix();
|
||||||
|
mmatrix<T> prototypes();
|
||||||
|
mmatrix<T> assignments();
|
||||||
|
T threshold();
|
||||||
|
std::size_t k();
|
||||||
|
|
||||||
|
std::vector<std::size_t> labels();
|
||||||
|
std::vector< std::vector<std::size_t> > label_clusters();
|
||||||
|
std::vector< mmatrix<T> > clusters();
|
||||||
|
|
||||||
|
void reset();
|
||||||
|
|
||||||
|
private:
|
||||||
|
mmatrix<T> initial_proto();
|
||||||
|
void initial_assign();
|
||||||
|
void initialisation();
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/*---Expectation-Maximisation-Clustering--------------------------------*/
|
||||||
|
template<typename T = double>
|
||||||
|
class emcluster{
|
||||||
|
private:
|
||||||
|
mmatrix<T> _DataMatrix;
|
||||||
|
mmatrix<T> _Prototypes;
|
||||||
|
mmatrix<T> _Assignments;
|
||||||
|
mmatrix<T> _ClusterProb;
|
||||||
|
std::size_t _K;
|
||||||
|
double _Sigma;
|
||||||
|
double _SigmaInit;
|
||||||
|
static double _Threshold;
|
||||||
|
|
||||||
|
public:
|
||||||
|
emcluster(std::size_t K, double sigma = 1e-4);
|
||||||
|
emcluster(mmatrix<T> && Mat, std::size_t K, double sigma = 1e-4);
|
||||||
|
emcluster(mmatrix<T> & Mat, std::size_t K, double sigma = 1e-4);
|
||||||
|
|
||||||
|
void initial_prototypes(mmatrix<T> & Mat);
|
||||||
|
void data_matrix(mmatrix<T> && Mat);
|
||||||
|
void data_matrix(mmatrix<T> & Mat);
|
||||||
|
void probability_matrix(mmatrix<T> && Mat);
|
||||||
|
void probability_matrix(mmatrix<T> & Mat);
|
||||||
|
void threshold(T thresh);
|
||||||
|
void sigma(double sigma);
|
||||||
|
|
||||||
|
double cluster();
|
||||||
|
std::vector<double> clustering(std::size_t Steps = 1e3);
|
||||||
|
|
||||||
|
mmatrix<T> data_matrix();
|
||||||
|
mmatrix<T> prototypes();
|
||||||
|
mmatrix<T> assignments();
|
||||||
|
mmatrix<T> probability_matrix();
|
||||||
|
T threshold();
|
||||||
|
double sigma();
|
||||||
|
std::size_t k();
|
||||||
|
|
||||||
|
std::vector<std::size_t> labels();
|
||||||
|
std::vector< std::vector<std::size_t> > label_clusters();
|
||||||
|
std::vector< mmatrix<T> > clusters();
|
||||||
|
|
||||||
|
void reset();
|
||||||
|
|
||||||
|
private:
|
||||||
|
void init_kmeans();
|
||||||
|
void initialisation();
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
double emcluster<T>::_Threshold = 1e-4;
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
emcluster<T>::emcluster(std::size_t K, double sigma):_K(K),_Sigma(sigma),_SigmaInit(sigma){
|
||||||
|
if(_K < 2){
|
||||||
|
throw std::out_of_range("K, number of prototypes, has to be greater than 1.");
|
||||||
|
}
|
||||||
|
if(!clustering::_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
clustering::_Seeded = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
emcluster<T>::emcluster(mmatrix<T> && Mat, std::size_t K, double sigma):_K(K),_Sigma(sigma),_SigmaInit(sigma){
|
||||||
|
if(_K < 2){
|
||||||
|
throw std::out_of_range("K, number of prototypes, has to be greater than 1.");
|
||||||
|
}
|
||||||
|
if(!clustering::_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
clustering::_Seeded = true;
|
||||||
|
}
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
emcluster<T>::emcluster(mmatrix<T> & Mat, std::size_t K, double sigma):_K(K),_Sigma(sigma),_SigmaInit(sigma){
|
||||||
|
if(_K < 2){
|
||||||
|
throw std::out_of_range("K, number of prototypes, has to be greater than 1.");
|
||||||
|
}
|
||||||
|
if(!clustering::_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
clustering::_Seeded = true;
|
||||||
|
}
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::initial_prototypes(mmatrix<T> & Mat){
|
||||||
|
if(Mat.row_size() != _K){
|
||||||
|
throw std::out_of_range("Initial prototypes row size("+
|
||||||
|
std::to_string(Mat.row_size())+") differs from number K("+
|
||||||
|
std::to_string(_K)+")");
|
||||||
|
}
|
||||||
|
if(Mat.col_size() != _DataMatrix.col_size() && _DataMatrix.col_size() != 0){
|
||||||
|
throw std::out_of_range("initial prototypes col size("+
|
||||||
|
std::to_string(Mat.col_size())+") differs from data col size ("+
|
||||||
|
std::to_string(_DataMatrix.col_size())+").");
|
||||||
|
}
|
||||||
|
_Prototypes = Mat;
|
||||||
|
initialisation();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::data_matrix(mmatrix<T> && Mat){
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::data_matrix(mmatrix<T> & Mat){
|
||||||
|
_DataMatrix = Mat;
|
||||||
|
init_kmeans();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::probability_matrix(mmatrix<T> && Mat){
|
||||||
|
probability_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::probability_matrix(mmatrix<T> & Mat){
|
||||||
|
_ClusterProb = Mat;
|
||||||
|
initialisation();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::threshold(T thresh){
|
||||||
|
_Threshold = thresh;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::sigma(double sigma){
|
||||||
|
_Sigma = sigma;
|
||||||
|
_SigmaInit = sigma;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
double emcluster<T>::cluster(){
|
||||||
|
double NewSigma = 1.0/(2.0*_Sigma);
|
||||||
|
for(std::size_t i = 0; i < _DataMatrix.row_size(); i++){
|
||||||
|
mmatrix<T> DataProtoDist = mmatrix<T>::vector_norms(_Prototypes - _DataMatrix[i],mmatrix<T>::euclids).transpose()*NewSigma;
|
||||||
|
DataProtoDist -= mmatrix<T>::mins(DataProtoDist);
|
||||||
|
//Final Step: _Assignment(i,:) = exp(DataProtoDist * Pj*-1)/sum(Pj*DataProtoDist*-1)[0][0]
|
||||||
|
}
|
||||||
|
|
||||||
|
_ClusterProb = mmatrix<T>::sums(_Assignments.transposition())/(T)_DataMatrix.row_size();
|
||||||
|
for(std::size_t i = 0; i < _K; i++){
|
||||||
|
mmatrix<T> NewProto = _DataMatrix.vec_entry_mult(_Assignments.transposition()[i]);
|
||||||
|
_Prototypes[i] = (mmatrix<T>::sums(NewProto.transposition())/mmatrix<T>::sum(_Assignments.transposition()[i]))[0];
|
||||||
|
}
|
||||||
|
NewSigma = 0;
|
||||||
|
for(std::size_t i = 0; i < _DataMatrix.row_size(); i++){
|
||||||
|
NewSigma += (double)(mmatrix<T>::vector_norms(_Prototypes - _DataMatrix[i],mmatrix<T>::euclids)*_Assignments[i])[0][0];
|
||||||
|
}
|
||||||
|
_Sigma = NewSigma/(_DataMatrix.row_size()*_DataMatrix.col_size());
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector<double> emcluster<T>::clustering(std::size_t Steps){
|
||||||
|
std::vector<double> ReconstError;
|
||||||
|
|
||||||
|
ReconstError.push_back(cluster());
|
||||||
|
|
||||||
|
for(std::size_t i = 1; i < Steps; i++){
|
||||||
|
ReconstError.push_back(cluster());
|
||||||
|
if(((ReconstError[i-1]-ReconstError[i])/ReconstError[i-1]) < _Threshold){
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ReconstError;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> emcluster<T>::data_matrix(){
|
||||||
|
return _DataMatrix;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> emcluster<T>::prototypes(){
|
||||||
|
return _Prototypes;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> emcluster<T>::assignments(){
|
||||||
|
return _Assignments;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> emcluster<T>::probability_matrix(){
|
||||||
|
return _ClusterProb;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
T emcluster<T>::threshold(){
|
||||||
|
return _Threshold;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
double emcluster<T>::sigma(){
|
||||||
|
return _Sigma;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::size_t emcluster<T>::k(){
|
||||||
|
return _K;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
std::vector<std::size_t> emcluster<T>::labels(){
|
||||||
|
std::vector<std::size_t> Labels(_Assignments.row_size());
|
||||||
|
for(std::size_t i = 0; i < _Assignments; i++){
|
||||||
|
Labels[i] = std::max_element(_Assignments[i].begin(),
|
||||||
|
_Assignments[i].end())-_Assignments[i].begin();
|
||||||
|
}
|
||||||
|
return labels;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector< std::vector<std::size_t> > emcluster<T>::label_clusters(){
|
||||||
|
std::vector< std::vector<std::size_t> > Clusters(_K);
|
||||||
|
for(std::size_t i = 0; i < _Assignments.row_size(); i++){
|
||||||
|
Clusters[(std::max_element(_Assignments[i].begin(),
|
||||||
|
_Assignments[i].end())-_Assignments[i].begin())].push_back(i);
|
||||||
|
}
|
||||||
|
return Clusters;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector< mmatrix<T> > emcluster<T>::clusters(){
|
||||||
|
std::vector< mmatrix<T> > Clusters(_K);
|
||||||
|
std::vector< std::vector<std::size_t> > cluster_label = label_clusters();
|
||||||
|
for(std::size_t i = 0; i < _K; i++){
|
||||||
|
Clusters[i].push_back(_Prototypes[i]);
|
||||||
|
for(std::size_t j = 0; j < cluster_label[i].size(); j++){
|
||||||
|
Clusters[i].push_back(_DataMatrix[cluster_label[i][j]]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return Clusters;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::reset(){
|
||||||
|
_Sigma = _SigmaInit;
|
||||||
|
init_kmeans();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::init_kmeans(){
|
||||||
|
kmeans<T> tmp_cluster(_DataMatrix,_K);
|
||||||
|
tmp_cluster.clustering();
|
||||||
|
_Prototypes = tmp_cluster.prototypes();
|
||||||
|
_Assignments = tmp_cluster.assignments();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void emcluster<T>::initialisation(){
|
||||||
|
if(_Prototypes.row_size() != _K){
|
||||||
|
throw std::out_of_range("Initial prototypes row size("+
|
||||||
|
std::to_string(_Prototypes.row_size())+
|
||||||
|
") differs from number K("+std::to_string(_K)+")");
|
||||||
|
}
|
||||||
|
if(_Prototypes.row_size() != _DataMatrix.col_size() && _DataMatrix.col_size() != 0){
|
||||||
|
throw std::out_of_range("initial prototypes col size("+
|
||||||
|
std::to_string(_Prototypes.col_size())+
|
||||||
|
") differs from data col size ("+
|
||||||
|
std::to_string(_DataMatrix.col_size())+").");
|
||||||
|
}
|
||||||
|
if(_ClusterProb.row_size() == _K){
|
||||||
|
_ClusterProb.transpose();
|
||||||
|
}
|
||||||
|
if(_ClusterProb.col_size() != _K){
|
||||||
|
throw std::out_of_range("Initial probabilities col size("+
|
||||||
|
std::to_string(_ClusterProb.col_size())+
|
||||||
|
") differs from number K("+std::to_string(_K)+")");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/*---Topograpic-Vector-Quantorisation-----------------------------------*/
|
||||||
|
template<typename T = double>
|
||||||
|
class tvq{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/*---KMeans-------------------------------------------------------------*/
|
||||||
|
template<typename T>
|
||||||
|
double kmeans<T>::_Threshold = 1e-4;
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
kmeans<T>::kmeans(std::size_t K):_K(K){
|
||||||
|
if(_K < 2){
|
||||||
|
throw std::out_of_range("K, number of prototypes, has to be greater than 1.");
|
||||||
|
}
|
||||||
|
if(!clustering::_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
clustering::_Seeded = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
kmeans<T>::kmeans(mmatrix<T> && Mat, std::size_t K):_K(K){
|
||||||
|
if(_K < 2){
|
||||||
|
throw std::out_of_range("K, number of prototypes, has to be greater than 1.");
|
||||||
|
}
|
||||||
|
if(!clustering::_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
clustering::_Seeded = true;
|
||||||
|
}
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
kmeans<T>::kmeans(mmatrix<T> & Mat, std::size_t K):_K(K){
|
||||||
|
if(_K < 2){
|
||||||
|
throw std::out_of_range("K, number of prototypes, has to be greater than 1.");
|
||||||
|
}
|
||||||
|
if(!clustering::_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
clustering::_Seeded = true;
|
||||||
|
}
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void kmeans<T>::initial_prototypes(mmatrix<T> & Mat){
|
||||||
|
if(Mat.row_size() != _K){
|
||||||
|
throw std::out_of_range("Initial prototypes row size("+
|
||||||
|
std::to_string(Mat.row_size())+") differs from number K("+
|
||||||
|
std::to_string(_K)+")");
|
||||||
|
}
|
||||||
|
if(Mat.col_size() != _DataMatrix.col_size() && _DataMatrix.col_size() != 0){
|
||||||
|
throw std::out_of_range("initial prototypes col size("+
|
||||||
|
std::to_string(Mat.col_size())+") differs from data col size ("+
|
||||||
|
std::to_string(_DataMatrix.col_size())+").");
|
||||||
|
}
|
||||||
|
_Prototypes = Mat;
|
||||||
|
initial_assign();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void kmeans<T>::data_matrix(mmatrix<T> && Mat){
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void kmeans<T>::data_matrix(mmatrix<T> & Mat){
|
||||||
|
_DataMatrix = Mat;
|
||||||
|
initialisation();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void kmeans<T>::threshold(T thresh){
|
||||||
|
_Threshold = thresh;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
double kmeans<T>::cluster(){
|
||||||
|
double ReconstError = 0;
|
||||||
|
for(std::size_t i = 0; i < _DataMatrix.row_size(); i++){
|
||||||
|
mmatrix<T> Assignment = mmatrix<T>::vector_norms(_Prototypes - _DataMatrix[i], mmatrix<T>::euclids);
|
||||||
|
_Assignments[i][std::max_element(_Assignments[i].begin(),_Assignments[i].end())-_Assignments[i].begin()] = T(0);
|
||||||
|
std::size_t Idx = std::max_element(Assignment[0].begin(),Assignment[0].end()) - Assignment[0].begin();
|
||||||
|
_Assignments[i][Idx] = T(1);
|
||||||
|
}
|
||||||
|
for(std::size_t i = 0; i < _K; i++){
|
||||||
|
mmatrix<T> NewProto = _DataMatrix.vec_entry_mult(_Assignments.transposition()[i]);
|
||||||
|
_Prototypes[i] = (mmatrix<T>::sums(NewProto.transposition())/mmatrix<T>::sum(_Assignments.transposition()[i]))[0];
|
||||||
|
}
|
||||||
|
for(std::size_t i = 0; i < _DataMatrix.row_size(); i++){
|
||||||
|
ReconstError += (double)(mmatrix<T>::vector_norms(_Prototypes - _DataMatrix[i],mmatrix<T>::euclids)*_Assignments[i])[0][0];
|
||||||
|
}
|
||||||
|
return ReconstError*_DataMatrix.row_size();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector<double> kmeans<T>::clustering(std::size_t Steps){
|
||||||
|
std::vector<double> ReconstError;
|
||||||
|
std::size_t Idx = 0, Try = 0;
|
||||||
|
double Gradient = 1, Diff = 1;
|
||||||
|
|
||||||
|
while(Try < Steps){
|
||||||
|
ReconstError.push_back(cluster());
|
||||||
|
Try++, Idx++;
|
||||||
|
if(std::abs(mmatrix<T>::min(mmatrix<T>::maxs(_Assignments.transposition()))) < 1e-10){
|
||||||
|
while(std::abs(mmatrix<T>::min(mmatrix<T>::maxs(_Assignments.transposition()))) < 1e-10){
|
||||||
|
ReconstError.clear();
|
||||||
|
initialisation();
|
||||||
|
ReconstError.push_back(cluster());
|
||||||
|
}
|
||||||
|
Idx = 1;
|
||||||
|
Gradient = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(Idx > 1){
|
||||||
|
Gradient = std::fabs((ReconstError[Idx-2]-ReconstError[Idx-1])/(ReconstError[Idx-2]));
|
||||||
|
}
|
||||||
|
if(Idx > 2){
|
||||||
|
Diff = std::fabs(ReconstError[Idx-1]-ReconstError[Idx-3]);
|
||||||
|
}
|
||||||
|
if(Gradient < _Threshold || std::fabs(ReconstError[Idx-1]) == 0 || Diff == 0 ){
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ReconstError;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> kmeans<T>::data_matrix(){
|
||||||
|
return _DataMatrix;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> kmeans<T>::prototypes(){
|
||||||
|
return _Prototypes;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> kmeans<T>::assignments(){
|
||||||
|
return _Assignments;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
T kmeans<T>::threshold(){
|
||||||
|
return _Threshold;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::size_t kmeans<T>::k(){
|
||||||
|
return _K;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
std::vector<std::size_t> kmeans<T>::labels(){
|
||||||
|
std::vector<std::size_t> Labels(_Assignments.row_size());
|
||||||
|
for(std::size_t i = 0; i < _Assignments; i++){
|
||||||
|
Labels[i] = std::max_element(_Assignments[i].begin(),_Assignments[i].end())-_Assignments[i].begin();
|
||||||
|
}
|
||||||
|
return labels;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector< std::vector<std::size_t> > kmeans<T>::label_clusters(){
|
||||||
|
std::vector< std::vector<std::size_t> > Clusters(_K);
|
||||||
|
for(std::size_t i = 0; i < _Assignments.row_size(); i++){
|
||||||
|
Clusters[(std::max_element(_Assignments[i].begin(),_Assignments[i].end())-_Assignments[i].begin())].push_back(i);
|
||||||
|
}
|
||||||
|
return Clusters;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector< mmatrix<T> > kmeans<T>::clusters(){
|
||||||
|
std::vector< mmatrix<T> > Clusters(_K);
|
||||||
|
std::vector< std::vector<std::size_t> > cluster_label = label_clusters();
|
||||||
|
for(std::size_t i = 0; i < _K; i++){
|
||||||
|
Clusters[i].push_back(_Prototypes[i]);
|
||||||
|
for(std::size_t j = 0; j < cluster_label[i].size(); j++){
|
||||||
|
Clusters[i].push_back(_DataMatrix[cluster_label[i][j]]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return Clusters;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void kmeans<T>::reset(){
|
||||||
|
_Prototypes = initial_proto();
|
||||||
|
initial_assign();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> kmeans<T>::initial_proto(){
|
||||||
|
mmatrix<T> Protos;
|
||||||
|
std::unordered_set<std::size_t> Indices;
|
||||||
|
std::size_t i = 0, idx;
|
||||||
|
|
||||||
|
while(i < _K){
|
||||||
|
idx = std::fmod(std::rand(),_DataMatrix.row_size());
|
||||||
|
auto Search = Indices.find(idx);
|
||||||
|
if(Search == Indices.end()){
|
||||||
|
Protos.push_back(_DataMatrix[idx]);
|
||||||
|
Indices.insert(idx);
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return Protos;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void kmeans<T>::initial_assign(){
|
||||||
|
mmatrix<T> Assignment;
|
||||||
|
std::size_t Idx;
|
||||||
|
for(std::size_t i = 0; i < _DataMatrix.row_size(); i++){
|
||||||
|
Assignment = mmatrix<T>::vector_norms(_Prototypes - _DataMatrix[i], mmatrix<T>::euclids);
|
||||||
|
Idx = std::max_element(Assignment[0].begin(),Assignment[0].end()) - Assignment[0].begin();
|
||||||
|
_Assignments[i][Idx] = T(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void kmeans<T>::initialisation(){
|
||||||
|
do{
|
||||||
|
_Assignments = mmatrix<T>(_DataMatrix.row_size(), _K);
|
||||||
|
_Prototypes = initial_proto();
|
||||||
|
initial_assign();
|
||||||
|
}while(std::abs(mmatrix<T>::min(mmatrix<T>::maxs(_Assignments.transposition()))) <1e-10);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
|
||||||
|
#endif
|
45
src/learning.hpp
Executable file
45
src/learning.hpp
Executable file
@ -0,0 +1,45 @@
|
|||||||
|
#ifndef _LEARNING_HPP_
|
||||||
|
#define _LEARNING_HPP_
|
||||||
|
/*===Libraries================================================================*/
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
namespace data_learning{
|
||||||
|
/*---machine-learning-------------------------------------------------------*/
|
||||||
|
namespace learning{
|
||||||
|
class perceptron{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class centroid{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class svm{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class neighbour{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class neuronal{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class kernel{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class forest{
|
||||||
|
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
|
||||||
|
#endif
|
135
src/mdimension.hpp
Executable file
135
src/mdimension.hpp
Executable file
@ -0,0 +1,135 @@
|
|||||||
|
#ifndef _MDIMENSION_HPP_
|
||||||
|
#define _MDIMENSION_HPP_
|
||||||
|
|
||||||
|
/*===Libraries================================================================*/
|
||||||
|
#include <iostream>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#include "mdimension.hpp"
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
class mdimension{
|
||||||
|
public:
|
||||||
|
// size(Mat) == _Row x _Col
|
||||||
|
std::size_t Row;
|
||||||
|
std::size_t Col;
|
||||||
|
|
||||||
|
public:
|
||||||
|
mdimension();
|
||||||
|
mdimension(std::size_t Size);
|
||||||
|
mdimension(std::size_t R, std::size_t C);
|
||||||
|
mdimension(const mdimension & Dim);
|
||||||
|
mdimension(const mdimension && Dim);
|
||||||
|
|
||||||
|
std::string to_string() const;
|
||||||
|
bool empty() const;
|
||||||
|
void swap();
|
||||||
|
|
||||||
|
bool operator==(const mdimension && Dim) const;
|
||||||
|
bool operator!=(const mdimension && Dim) const;
|
||||||
|
bool operator==(const mdimension & Dim) const;
|
||||||
|
bool operator!=(const mdimension & Dim) const;
|
||||||
|
|
||||||
|
mdimension& operator=(const mdimension && Dim);
|
||||||
|
mdimension& operator=(const mdimension & Dim);
|
||||||
|
|
||||||
|
mdimension operator*(const mdimension && DimL) const;
|
||||||
|
mdimension& operator*=(const mdimension && DimL);
|
||||||
|
mdimension operator*(const mdimension & DimL) const;
|
||||||
|
mdimension& operator*=(const mdimension & DimL);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
mdimension::mdimension():Row(0),Col(0){
|
||||||
|
}
|
||||||
|
mdimension::mdimension(std::size_t Size):Row(Size),Col(Size){
|
||||||
|
}
|
||||||
|
mdimension::mdimension(std::size_t R, std::size_t C):Row(R),Col(C){
|
||||||
|
}
|
||||||
|
mdimension::mdimension(const mdimension & Dim){
|
||||||
|
Row = Dim.Row;
|
||||||
|
Col = Dim.Col;
|
||||||
|
}
|
||||||
|
mdimension::mdimension(const mdimension && Dim){
|
||||||
|
Row = Dim.Row;
|
||||||
|
Col = Dim.Col;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::string mdimension::to_string() const{
|
||||||
|
std::string Str = "<" + std::to_string(Row) + "x"+std::to_string(Col) + ">";
|
||||||
|
return Str;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool mdimension::empty() const{
|
||||||
|
return ((Row + Col) == 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
void mdimension::swap(){
|
||||||
|
std::size_t Tmp = std::move(Row);
|
||||||
|
Row = std::move(Col);
|
||||||
|
Col = std::move(Tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool mdimension::operator==(const mdimension && Dim) const{
|
||||||
|
return operator==(Dim);
|
||||||
|
}
|
||||||
|
bool mdimension::operator!=(const mdimension && Dim) const{
|
||||||
|
return operator!=(Dim);
|
||||||
|
}
|
||||||
|
bool mdimension::operator==(const mdimension & Dim) const{
|
||||||
|
return (Row - Dim.Row + Col - Dim.Col) == 0;
|
||||||
|
}
|
||||||
|
bool mdimension::operator!=(const mdimension & Dim) const{
|
||||||
|
return (Row - Dim.Row + Col - Dim.Col) != 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
mdimension& mdimension::operator=(const mdimension && Dim){
|
||||||
|
return operator=(Dim);
|
||||||
|
}
|
||||||
|
mdimension& mdimension::operator=(const mdimension & Dim){
|
||||||
|
Row = Dim.Row;
|
||||||
|
Col = Dim.Col;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
mdimension mdimension::operator*(const mdimension && Dim) const{
|
||||||
|
return operator*(Dim);
|
||||||
|
}
|
||||||
|
mdimension& mdimension::operator*=(const mdimension && Dim){
|
||||||
|
return operator*=(Dim);
|
||||||
|
}
|
||||||
|
mdimension mdimension::operator*(const mdimension & Dim) const{
|
||||||
|
mdimension NewDim(0);
|
||||||
|
if((Col - Dim.Row) == 0){
|
||||||
|
NewDim.Row = Row;
|
||||||
|
NewDim.Col = Dim.Col;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
throw std::out_of_range("Matrix dimensions "+to_string() + " * "
|
||||||
|
+ Dim.to_string() + " are not conforming, " + std::to_string(Col)
|
||||||
|
+ " != " +std::to_string(Dim.Row) + ".");
|
||||||
|
}
|
||||||
|
return NewDim;
|
||||||
|
}
|
||||||
|
mdimension& mdimension::operator*=(const mdimension & Dim){
|
||||||
|
if((Col - Dim.Row) == 0){
|
||||||
|
Col = Dim.Col;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
throw std::out_of_range("Matrix dimensions "+to_string() + " * "
|
||||||
|
+ Dim.to_string() + " are not conforming, " + std::to_string(Col)
|
||||||
|
+ " != " +std::to_string(Dim.Row) + ".");
|
||||||
|
}
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
160
src/meigen.hpp
Executable file
160
src/meigen.hpp
Executable file
@ -0,0 +1,160 @@
|
|||||||
|
#ifndef _MEIGEN_HPP_
|
||||||
|
#define _MEIGEN_HPP_
|
||||||
|
|
||||||
|
/*===Libraries================================================================*/
|
||||||
|
#define _USE_MATH_DEFINES
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <ctime>
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
template<typename T>
|
||||||
|
class mmatrix;
|
||||||
|
|
||||||
|
template<typename T = double>
|
||||||
|
class meigen{
|
||||||
|
private:
|
||||||
|
mmatrix<T> _EigenVector;
|
||||||
|
T _EigenValue;
|
||||||
|
static double _Threshold;
|
||||||
|
static T _RMin;
|
||||||
|
static T _RMax;
|
||||||
|
static std::size_t _MaxPowerVal;
|
||||||
|
static bool _Seeded;
|
||||||
|
|
||||||
|
public:
|
||||||
|
meigen();
|
||||||
|
meigen(mmatrix<T> && Vector, T Value);
|
||||||
|
meigen(mmatrix<T> & Vector, T Value);
|
||||||
|
|
||||||
|
mmatrix<T> vector();
|
||||||
|
T value();
|
||||||
|
|
||||||
|
static meigen<T> power_iteration(mmatrix<T> && SqrMatrix, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
static meigen<T> power_iteration(mmatrix<T> & SqrMatrix, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
static meigen<T> power_iteration(mmatrix<T> && SqrMatrix, mmatrix<T> && InitVector, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
static meigen<T> power_iteration(mmatrix<T> & SqrMatrix, mmatrix<T> & InitVector, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
|
||||||
|
static double threshold();
|
||||||
|
static void threshold(double thresh);
|
||||||
|
static std::size_t power_counter();
|
||||||
|
static void power_counter(std::size_t MaxCtr);
|
||||||
|
};
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
template<typename T>
|
||||||
|
double meigen<T>::_Threshold = 1e-4;
|
||||||
|
template<typename T>
|
||||||
|
T meigen<T>::_RMax = T(1000);
|
||||||
|
template<typename T>
|
||||||
|
T meigen<T>::_RMin = T(0);
|
||||||
|
template<typename T>
|
||||||
|
std::size_t meigen<T>::_MaxPowerVal = 1e5;
|
||||||
|
template<typename T>
|
||||||
|
bool meigen<T>::_Seeded = false;
|
||||||
|
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
template<typename T>
|
||||||
|
meigen<T>::meigen(){
|
||||||
|
if(!_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
_Seeded = true;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
meigen<T>::meigen(mmatrix<T> && Vector, T Value){
|
||||||
|
_EigenVector = Vector;
|
||||||
|
_EigenValue = Value;
|
||||||
|
if(!_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
_Seeded = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
meigen<T>::meigen(mmatrix<T> & Vector, T Value){
|
||||||
|
_EigenVector = Vector;
|
||||||
|
_EigenValue = Value;
|
||||||
|
if(!_Seeded){
|
||||||
|
std::srand(std::time(NULL));
|
||||||
|
_Seeded = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> meigen<T>::vector(){
|
||||||
|
return _EigenVector;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
T meigen<T>::value(){
|
||||||
|
return _EigenValue;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
meigen<T> meigen<T>::power_iteration(mmatrix<T> && SqrMatrix, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
return power_iteration(SqrMatrix, Norm);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
meigen<T> meigen<T>::power_iteration(mmatrix<T> & SqrMatrix, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
std::vector<T> RandVec(SqrMatrix.col_size());
|
||||||
|
|
||||||
|
std::transform(RandVec.begin(), RandVec.end(), RandVec.begin(),[](T & Tmp){
|
||||||
|
return std::fmod(std::rand(),(_RMax-_RMin + 1)) + _RMin;
|
||||||
|
});
|
||||||
|
mmatrix<T> RandInitVector(RandVec);
|
||||||
|
|
||||||
|
return power_iteration(SqrMatrix, RandInitVector, Norm);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
meigen<T> meigen<T>::power_iteration(mmatrix<T> && SqrMatrix, mmatrix<T> && InitVector, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
power_iteration(SqrMatrix, InitVector, Norm);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
meigen<T> meigen<T>::power_iteration(mmatrix<T> & SqrMatrix, mmatrix<T> & InitVector, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(SqrMatrix.row_size() != SqrMatrix.col_size()){
|
||||||
|
throw std::out_of_range("power_iteration: Matrix has to be square matix, but it is "+SqrMatrix.size().to_string()+".");
|
||||||
|
}
|
||||||
|
mmatrix<T> PreVec = InitVector/Norm(InitVector), EigVec(PreVec * SqrMatrix);
|
||||||
|
EigVec /= Norm(EigVec);
|
||||||
|
|
||||||
|
double deg = std::acos((PreVec*EigVec.transposition())[0][0])*180.0 / M_PI;
|
||||||
|
std::size_t RoundCtr = 0;
|
||||||
|
while(deg > _Threshold && RoundCtr < _MaxPowerVal){
|
||||||
|
RoundCtr++;
|
||||||
|
PreVec = EigVec;
|
||||||
|
EigVec = PreVec * SqrMatrix;
|
||||||
|
EigVec /= Norm(EigVec);
|
||||||
|
deg = std::acos((PreVec*EigVec.transposition())[0][0])*180.0 / M_PI;
|
||||||
|
}
|
||||||
|
T EigVal = (EigVec * (SqrMatrix * EigVec.transposition()))[0][0];
|
||||||
|
return meigen(EigVec, EigVal);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
double meigen<T>::threshold(){
|
||||||
|
return _Threshold;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void meigen<T>::threshold(double Thresh){
|
||||||
|
_Threshold = Thresh;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::size_t meigen<T>::power_counter(){
|
||||||
|
return _MaxPowerVal;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void meigen<T>::power_counter(std::size_t MaxCtr){
|
||||||
|
_MaxPowerVal = MaxCtr;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
377
src/mining.hpp
Executable file
377
src/mining.hpp
Executable file
@ -0,0 +1,377 @@
|
|||||||
|
#ifndef _MINING_HPP_
|
||||||
|
#define _MINING_HPP_
|
||||||
|
|
||||||
|
/*===Libraries================================================================*/
|
||||||
|
#include <cmath>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "mmatrix.hpp"
|
||||||
|
#include "meigen.hpp"
|
||||||
|
|
||||||
|
namespace data_learning{
|
||||||
|
/*---data-mining------------------------------------------------------------*/
|
||||||
|
namespace mining{
|
||||||
|
template<typename T = double>
|
||||||
|
class pca{
|
||||||
|
private:
|
||||||
|
mmatrix<T> _DataMatrix;
|
||||||
|
mmatrix<T> _CovMatrix;
|
||||||
|
std::vector< meigen<T> > _Eigens;
|
||||||
|
|
||||||
|
public:
|
||||||
|
pca();
|
||||||
|
pca(mmatrix<T> && Mat);
|
||||||
|
pca(mmatrix<T> & Mat);
|
||||||
|
|
||||||
|
void data_matrix(mmatrix<T> && Mat);
|
||||||
|
void data_matrix(mmatrix<T> & Mat);
|
||||||
|
|
||||||
|
mmatrix<T> data_matrix();
|
||||||
|
mmatrix<T> cov_matrix();
|
||||||
|
std::vector< meigen<T> > eigen(std::size_t EigNumber = 0, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
|
||||||
|
mmatrix<T> eigen_spectrum(std::size_t EigNumber = 0, bool normalise = true, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> loadings(std::size_t LoadNumber = 0, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> loading(std::size_t LoadIdx, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> principle_components(std::size_t CompNumber = 0, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> principle_component(std::size_t CompIdx, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
|
||||||
|
private:
|
||||||
|
void calc_eigen(std::size_t EigNumber, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
pca<T>::pca(){
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
pca<T>::pca(mmatrix<T> && Mat){
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
pca<T>::pca(mmatrix<T> & Mat){
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void pca<T>::data_matrix(mmatrix<T> && Mat){
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void pca<T>::data_matrix(mmatrix<T> & Mat){
|
||||||
|
_Eigens.clear();
|
||||||
|
_CovMatrix.clear();
|
||||||
|
_DataMatrix = Mat;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> pca<T>::data_matrix(){
|
||||||
|
return _DataMatrix;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> pca<T>::cov_matrix(){
|
||||||
|
if(_CovMatrix.size().Row == 0 || _CovMatrix.size().Col == 0){
|
||||||
|
_CovMatrix = mmatrix<T>::covariance(_DataMatrix);
|
||||||
|
}
|
||||||
|
return _CovMatrix;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector< meigen<T> > pca<T>::eigen(std::size_t EigNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < EigNumber || EigNumber == 0){
|
||||||
|
if(EigNumber == 0){
|
||||||
|
EigNumber = _DataMatrix.col_size();
|
||||||
|
}
|
||||||
|
calc_eigen(EigNumber, Norm);
|
||||||
|
}
|
||||||
|
return _Eigens;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> pca<T>::eigen_spectrum(std::size_t EigNumber, bool normalise, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < EigNumber || EigNumber == 0){
|
||||||
|
if(EigNumber == 0){
|
||||||
|
EigNumber = _DataMatrix.col_size();
|
||||||
|
}
|
||||||
|
calc_eigen(EigNumber, Norm);
|
||||||
|
}
|
||||||
|
mmatrix<T> EigSpec = mmatrix<T>(1,EigNumber);
|
||||||
|
T Sum = T();
|
||||||
|
for(std::size_t i = 0; i < EigNumber; i++){
|
||||||
|
EigSpec[0][i] = _Eigens[i].value();
|
||||||
|
Sum += _Eigens[i].value();
|
||||||
|
}
|
||||||
|
if(normalise){
|
||||||
|
std::transform(EigSpec[0].begin(), EigSpec[0].end(), EigSpec[0].begin(), [Sum](T & Val){
|
||||||
|
return Val/Sum;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
return EigSpec;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> pca<T>::loadings(std::size_t LoadNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < LoadNumber || LoadNumber == 0){
|
||||||
|
if(LoadNumber == 0){
|
||||||
|
LoadNumber = _DataMatrix.col_size();
|
||||||
|
}
|
||||||
|
calc_eigen(LoadNumber, Norm);
|
||||||
|
}
|
||||||
|
mmatrix<T> Loadings = mmatrix<T>();
|
||||||
|
for(meigen<T> Eigen : _Eigens){
|
||||||
|
Loadings.push_back(Eigen.vector());
|
||||||
|
}
|
||||||
|
return Loadings;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> pca<T>::loading(std::size_t LoadIdx, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < LoadIdx){
|
||||||
|
calc_eigen(LoadIdx, Norm);
|
||||||
|
}
|
||||||
|
return _Eigens[LoadIdx].vector();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> pca<T>::principle_components(std::size_t CompNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < CompNumber || CompNumber == 0){
|
||||||
|
if(CompNumber == 0){
|
||||||
|
CompNumber = _DataMatrix.col_size();
|
||||||
|
}
|
||||||
|
calc_eigen(CompNumber, Norm);
|
||||||
|
}
|
||||||
|
mmatrix<T> PrinComp = _DataMatrix*loadings().transposition();
|
||||||
|
return PrinComp;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> pca<T>::principle_component(std::size_t CompIdx, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < CompIdx){
|
||||||
|
calc_eigen(CompIdx, Norm);
|
||||||
|
}
|
||||||
|
return _DataMatrix*_Eigens[CompIdx].vector().transposition();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void pca<T>::calc_eigen(std::size_t EigNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_CovMatrix.size().Row == 0 || _CovMatrix.size().Col == 0){
|
||||||
|
_CovMatrix = mmatrix<T>::covariance(_DataMatrix);
|
||||||
|
}
|
||||||
|
if(EigNumber == 0){
|
||||||
|
EigNumber = _CovMatrix.row_size();
|
||||||
|
}
|
||||||
|
if(_Eigens.size() == 0){
|
||||||
|
_Eigens = mmatrix<T>::eigen(_CovMatrix, EigNumber, Norm);
|
||||||
|
}
|
||||||
|
else if(_Eigens.size() < EigNumber){
|
||||||
|
std::vector< meigen<T> > remainEigen = mmatrix<T>::eigen(mmatrix<T>::reduced_covariance(_CovMatrix, _Eigens),EigNumber-_Eigens.size(), Norm);
|
||||||
|
_Eigens.insert(_Eigens.end(),remainEigen.begin(),remainEigen.end());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*----------------------------------------------------------------------*/
|
||||||
|
template<typename T = double>
|
||||||
|
class mds{
|
||||||
|
private:
|
||||||
|
mmatrix<T> _DistMatrix;
|
||||||
|
mmatrix<T> _GramianMatrix;
|
||||||
|
std::vector< meigen<T> > _Eigens;
|
||||||
|
|
||||||
|
public:
|
||||||
|
mds();
|
||||||
|
mds(mmatrix<T> && Mat);
|
||||||
|
mds(mmatrix<T> & Mat);
|
||||||
|
|
||||||
|
void dist_matrix(mmatrix<T> && Mat);
|
||||||
|
void dist_matrix(mmatrix<T> & Mat);
|
||||||
|
|
||||||
|
void data_matrix(mmatrix<T> && Mat, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
void data_matrix(mmatrix<T> & Mat, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
|
||||||
|
mmatrix<T> dist_matrix();
|
||||||
|
mmatrix<T> gramian_matrix();
|
||||||
|
std::vector< meigen<T> > eigen(std::size_t EigNumber = 0, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
|
||||||
|
mmatrix<T> eigen_spectrum(std::size_t EigNumber = 0, bool normalise = true, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> loadings(std::size_t LoadNumber = 0, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> loading(std::size_t LoadIdx, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> principle_components(std::size_t CompNumber = 0, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
mmatrix<T> principle_component(std::size_t CompIdx, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
|
||||||
|
private:
|
||||||
|
void calc_eigen(std::size_t EigNumber, std::function<T(mmatrix<T>)> const& Norm = mmatrix<T>::euclid);
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mds<T>::mds(){
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mds<T>::mds(mmatrix<T> && Mat){
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mds<T>::mds(mmatrix<T> & Mat){
|
||||||
|
data_matrix(Mat);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void mds<T>::dist_matrix(mmatrix<T> && Mat){
|
||||||
|
_Eigens.clear();
|
||||||
|
_GramianMatrix.clear();
|
||||||
|
_DistMatrix = Mat;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void mds<T>::dist_matrix(mmatrix<T> & Mat){
|
||||||
|
_Eigens.clear();
|
||||||
|
_GramianMatrix.clear();
|
||||||
|
_DistMatrix = Mat;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void mds<T>::data_matrix(mmatrix<T> && Mat, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
data_matrix(Mat,Norm);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void mds<T>::data_matrix(mmatrix<T> & Mat, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
_Eigens.clear();
|
||||||
|
_GramianMatrix.clear();
|
||||||
|
_DistMatrix = mmatrix<T>::vectorwise_distance(Mat,Mat,Norm);
|
||||||
|
std::ofstream asdf("dist.dat");
|
||||||
|
asdf << _DistMatrix.to_string() << std::endl;
|
||||||
|
asdf.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> mds<T>::dist_matrix(){
|
||||||
|
return _DistMatrix;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> mds<T>::gramian_matrix(){
|
||||||
|
if(_GramianMatrix.size().Row == 0 || _GramianMatrix.size().Col == 0){
|
||||||
|
_GramianMatrix = mmatrix<T>::gramian(_DistMatrix);
|
||||||
|
}
|
||||||
|
return _GramianMatrix;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
std::vector< meigen<T> > mds<T>::eigen(std::size_t EigNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < EigNumber || EigNumber == 0){
|
||||||
|
calc_eigen(EigNumber, Norm);
|
||||||
|
}
|
||||||
|
return _Eigens;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> mds<T>::eigen_spectrum(std::size_t EigNumber, bool normalise, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < EigNumber || EigNumber == 0){
|
||||||
|
calc_eigen(EigNumber, Norm);
|
||||||
|
}
|
||||||
|
mmatrix<T> EigSpec = mmatrix<T>(1,EigNumber);
|
||||||
|
T Sum = T();
|
||||||
|
for(std::size_t i = 0; i < EigNumber; i++){
|
||||||
|
EigSpec[0][i] = _Eigens[i].value();
|
||||||
|
Sum += _Eigens[i].value();
|
||||||
|
}
|
||||||
|
if(normalise){
|
||||||
|
std::transform(EigSpec[0].begin(), EigSpec[0].end(), EigSpec[0].begin(), [Sum](T & Val){
|
||||||
|
return Val/Sum;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
return EigSpec;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> mds<T>::loadings(std::size_t LoadNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < LoadNumber || LoadNumber == 0){
|
||||||
|
calc_eigen(LoadNumber, Norm);
|
||||||
|
}
|
||||||
|
mmatrix<T> Loadings = mmatrix<T>();
|
||||||
|
for(meigen<T> Eigen : _Eigens){
|
||||||
|
Loadings.push_back(Eigen.vector());
|
||||||
|
}
|
||||||
|
return Loadings;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> mds<T>::loading(std::size_t LoadIdx, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_Eigens.size() < LoadIdx){
|
||||||
|
calc_eigen(LoadIdx, Norm);
|
||||||
|
}
|
||||||
|
return _Eigens[LoadIdx].vector();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> mds<T>::principle_components(std::size_t CompNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
return loadings(CompNumber, Norm).transposition();
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
mmatrix<T> mds<T>::principle_component(std::size_t CompIdx, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
return loading(CompIdx, Norm).transposition();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void mds<T>::calc_eigen(std::size_t EigNumber, std::function<T(mmatrix<T>)> const& Norm){
|
||||||
|
if(_GramianMatrix.size().Row == 0 || _GramianMatrix.size().Col == 0){
|
||||||
|
_GramianMatrix = mmatrix<T>::gramian(_DistMatrix);
|
||||||
|
std::ofstream asdf("gram.dat");
|
||||||
|
asdf << _GramianMatrix.to_string() << std::endl;
|
||||||
|
asdf.close();
|
||||||
|
}
|
||||||
|
if(EigNumber == 0){
|
||||||
|
EigNumber = _GramianMatrix.row_size();
|
||||||
|
}
|
||||||
|
if(_Eigens.size() == 0){
|
||||||
|
_Eigens = mmatrix<T>::eigen(_GramianMatrix, EigNumber, Norm);
|
||||||
|
}
|
||||||
|
else if(_Eigens.size() < EigNumber){
|
||||||
|
std::vector< meigen<T> > remainEigen = mmatrix<T>::eigen(mmatrix<T>::reduced_covariance(_GramianMatrix, _Eigens),EigNumber-_Eigens.size(), Norm);
|
||||||
|
_Eigens.insert(_Eigens.end(),remainEigen.begin(),remainEigen.end());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*----------------------------------------------------------------------*/
|
||||||
|
template<typename T = double>
|
||||||
|
class sammon{
|
||||||
|
private:
|
||||||
|
mmatrix<T> _DataMatrix;
|
||||||
|
std::vector< meigen<T> > _Eigens;
|
||||||
|
|
||||||
|
public:
|
||||||
|
sammon();
|
||||||
|
sammon(mmatrix<T> && Mat);
|
||||||
|
sammon(mmatrix<T> & Mat);
|
||||||
|
|
||||||
|
void set_matrix(mmatrix<T> && Mat);
|
||||||
|
void set_matrix(mmatrix<T> & Mat);
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
sammon<T>::sammon(){
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
sammon<T>::sammon(mmatrix<T> && Mat){
|
||||||
|
set_matrix(Mat);
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
sammon<T>::sammon(mmatrix<T> & Mat){
|
||||||
|
set_matrix(Mat);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
void sammon<T>::set_matrix(mmatrix<T> && Mat){
|
||||||
|
_Eigens.clear();
|
||||||
|
_DataMatrix = Mat;
|
||||||
|
}
|
||||||
|
template<typename T>
|
||||||
|
void sammon<T>::set_matrix(mmatrix<T> & Mat){
|
||||||
|
_Eigens.clear();
|
||||||
|
_DataMatrix = Mat;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*----------------------------------------------------------------------*/
|
||||||
|
class kernelreg{
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
|
||||||
|
#endif
|
1823
src/mmatrix.hpp
Executable file
1823
src/mmatrix.hpp
Executable file
File diff suppressed because it is too large
Load Diff
215
test/debug.cpp
Executable file
215
test/debug.cpp
Executable file
@ -0,0 +1,215 @@
|
|||||||
|
/*===Libraries================================================================*/
|
||||||
|
#include <iostream>
|
||||||
|
#include <vector>
|
||||||
|
#include <fstream>
|
||||||
|
#include <string>
|
||||||
|
#include <sstream>
|
||||||
|
#include <omp.h>
|
||||||
|
|
||||||
|
#include "../src/mmatrix.hpp"
|
||||||
|
#include "../src/mining.hpp"
|
||||||
|
#include "../src/learning.hpp"
|
||||||
|
#include "../src/clustering.hpp"
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
void debug_kmeans();
|
||||||
|
void debug_pca();
|
||||||
|
void debug_mds();
|
||||||
|
void debug_matrix();
|
||||||
|
|
||||||
|
void split(const std::string &s, char delim, std::vector<double> &elems);
|
||||||
|
std::vector<double> split(const std::string &s, char delim);
|
||||||
|
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
int main(){
|
||||||
|
debug_kmeans();
|
||||||
|
//debug_matrix();
|
||||||
|
//debug_pca();
|
||||||
|
//debug_mds();
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*---clustering-------------------------------------------------------------*/
|
||||||
|
void debug_kmeans(){
|
||||||
|
mmatrix<double> DataMat;
|
||||||
|
std::vector<double> data;
|
||||||
|
std::string Line;
|
||||||
|
std::size_t K;
|
||||||
|
|
||||||
|
std::ifstream Input("data-test/Cluster.dat");
|
||||||
|
if(Input.is_open()){
|
||||||
|
while(std::getline(Input,Line)){
|
||||||
|
if(Line.size() != 0){
|
||||||
|
data = split(Line, ' ');
|
||||||
|
DataMat.push_back(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Input.close();
|
||||||
|
|
||||||
|
K = 4;
|
||||||
|
data_learning::clustering::kmeans<double> KMeans = data_learning::clustering::kmeans<double>(DataMat,K);
|
||||||
|
|
||||||
|
std::ofstream Output("data-test/Cls_ErrDev.dat");
|
||||||
|
std::vector<double> ErrDev = KMeans.clustering();
|
||||||
|
for(std::size_t i = 0; i < ErrDev.size(); i++){
|
||||||
|
Output << ErrDev[i] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("data-test/clustered.dat");
|
||||||
|
std::vector< mmatrix<double> > Clusters = KMeans.clusters();
|
||||||
|
for(std::size_t i = 0; i < Clusters.size(); i++){
|
||||||
|
Output << Clusters[i].to_string() << std::endl << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/*---data-mining------------------------------------------------------------*/
|
||||||
|
void debug_pca(){
|
||||||
|
mmatrix<double> DataMat, EigSpec, PrinComp, EigenVectors;
|
||||||
|
std::vector<double> data;
|
||||||
|
std::string Line;
|
||||||
|
|
||||||
|
std::ifstream Input("data-test/Hidden1.dat");
|
||||||
|
while(!Input.eof()){
|
||||||
|
std::getline(Input,Line);
|
||||||
|
data = split(Line, ' ');
|
||||||
|
if(data.size() != 0){
|
||||||
|
DataMat.push_back(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Input.close();
|
||||||
|
|
||||||
|
|
||||||
|
data_learning::mining::pca<double> PCA = data_learning::mining::pca<double>(DataMat);
|
||||||
|
|
||||||
|
unsigned EigNumb = 10;
|
||||||
|
|
||||||
|
std::ofstream Output("data-test/EigenSpectum_PCA.dat");
|
||||||
|
EigSpec = PCA.eigen_spectrum();
|
||||||
|
for(unsigned i = 0; i < EigSpec.col_size(); i++){
|
||||||
|
Output << EigSpec[0][i] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("data-test/PrincipleComponents_PCA.dat");
|
||||||
|
PrinComp = PCA.principle_components(EigNumb);
|
||||||
|
for(unsigned i = 0; i < PrinComp.row_size(); i++){
|
||||||
|
for(unsigned j = 0; j < PrinComp.col_size()-1; j++){
|
||||||
|
Output << PrinComp[i][j] << "\t";
|
||||||
|
}
|
||||||
|
Output << PrinComp[i][PrinComp.col_size()-1] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("data-test/Loadings_PCA.dat");
|
||||||
|
EigenVectors = PCA.loadings();
|
||||||
|
for(unsigned i = 0; i < EigenVectors.row_size(); i++){
|
||||||
|
for(unsigned j = 0; j < EigenVectors.col_size()-1; j++){
|
||||||
|
Output << EigenVectors[i][j] << "\t";
|
||||||
|
}
|
||||||
|
Output << EigenVectors[i][EigenVectors.col_size()-1] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
void debug_mds(){
|
||||||
|
mmatrix<double> DataMat, EigSpec, PrinComp;
|
||||||
|
std::vector<double> data;
|
||||||
|
std::string Line;
|
||||||
|
|
||||||
|
mmatrix<double>::thread(4);
|
||||||
|
|
||||||
|
std::ifstream Input("data-test/Hidden.dat");
|
||||||
|
while(!Input.eof()){
|
||||||
|
std::getline(Input,Line);
|
||||||
|
data = split(Line, ' ');
|
||||||
|
if(data.size() != 0){
|
||||||
|
DataMat.push_back(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Input.close();
|
||||||
|
|
||||||
|
data_learning::mining::mds<double> MDS = data_learning::mining::mds<double>(DataMat);
|
||||||
|
|
||||||
|
std::ofstream Output("data-test/EigenSpectum_MDS.dat");
|
||||||
|
EigSpec = MDS.eigen_spectrum(2);
|
||||||
|
for(unsigned i = 0; i < EigSpec.col_size(); i++){
|
||||||
|
Output << EigSpec[0][i] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("data-test/PrincipleComponents_MDS.dat");
|
||||||
|
PrinComp = MDS.principle_components(2);
|
||||||
|
for(unsigned i = 0; i < PrinComp.row_size(); i++){
|
||||||
|
for(unsigned j = 0; j < PrinComp.col_size()-1; j++){
|
||||||
|
Output << PrinComp[i][j] << "\t";
|
||||||
|
}
|
||||||
|
Output << PrinComp[i][PrinComp.col_size()-1] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
/*---Auxilliary---------------------------------------------------------------*/
|
||||||
|
void debug_matrix(){
|
||||||
|
mmatrix<double> Mat1 = {{1,2,3},{4,5,6},{7,8,9}};
|
||||||
|
mmatrix<double> Mat2 = {{0,1,2},{3,4,5},{6,7,8}};
|
||||||
|
mmatrix<double> Vec1 = {10.0,11.0,12.0};
|
||||||
|
std::vector<double> Vec2 = {11.0,12.0,13.0};
|
||||||
|
double factor = 3;
|
||||||
|
|
||||||
|
std::cout << "Matrix 1:\n" << Mat1.to_string() << "\nMatrix2:\n" << Mat2.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "Vec 1:\n" << Vec1.to_string() << "\nVec2:\n";
|
||||||
|
for(auto Val : Vec2){
|
||||||
|
std::cout << Val << " ";
|
||||||
|
}
|
||||||
|
std::cout << std::endl << std::endl;
|
||||||
|
|
||||||
|
std::cout << "M1+ M2 : \n" << (Mat1+Mat2).to_string() << std::endl << std::endl;
|
||||||
|
Mat1 += Mat2;
|
||||||
|
std::cout << "M1+=M2 : \n" << Mat1.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "M1- M2 : \n" << (Mat1-Mat2).to_string() << std::endl << std::endl;
|
||||||
|
Mat1 -= Mat2;
|
||||||
|
std::cout << "M1-=M2 : \n" << Mat1.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
std::cout << "M1* M2 : \n" << (Mat1*Mat2).to_string() << std::endl << std::endl;
|
||||||
|
Mat1 *= Mat2;
|
||||||
|
std::cout << "M1* " << factor << " : \n" << (Mat1*factor).to_string() << std::endl << std::endl;
|
||||||
|
Mat1 *= factor;
|
||||||
|
std::cout << "M1*=" << factor << " : \n" << Mat1.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
std::cout << "M1* V1': \n" << (Mat1*Vec1.transposition()).to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "M1* V2 : \n" << (Mat1*Vec2).to_string() << std::endl << std::endl;
|
||||||
|
Mat1 *= Vec1.transposition();
|
||||||
|
std::cout << "M1*=V1 : \n" << Mat1.to_string() << std::endl << std::endl;
|
||||||
|
Mat1.transpose();
|
||||||
|
Mat1 *= Vec2;
|
||||||
|
std::cout << "M1'*=V2 : \n" << Mat1.to_string() << std::endl << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void split(const std::string &s, char delim, std::vector<double> &elems){
|
||||||
|
std::stringstream ss;
|
||||||
|
ss.str(s);
|
||||||
|
std::string item;
|
||||||
|
while (std::getline(ss, item, delim)) {
|
||||||
|
if(item.empty() == false){
|
||||||
|
elems.push_back(std::stof(item));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<double> split(const std::string &s, char delim){
|
||||||
|
std::vector<double> elems;
|
||||||
|
split(s, delim, elems);
|
||||||
|
return elems;
|
||||||
|
}
|
179
test/debug_cluster.cpp
Executable file
179
test/debug_cluster.cpp
Executable file
@ -0,0 +1,179 @@
|
|||||||
|
/*===Libraries================================================================*/
|
||||||
|
#include <iostream>
|
||||||
|
#include <vector>
|
||||||
|
#include <fstream>
|
||||||
|
#include <string>
|
||||||
|
#include <sstream>
|
||||||
|
#include <omp.h>
|
||||||
|
|
||||||
|
#include "../src/mmatrix.hpp"
|
||||||
|
#include "../src/mining.hpp"
|
||||||
|
#include "../src/learning.hpp"
|
||||||
|
#include "../src/clustering.hpp"
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
void debug_kmeans();
|
||||||
|
void debug_pca();
|
||||||
|
void debug_mds();
|
||||||
|
|
||||||
|
void split(const std::string &s, char delim, std::vector<double> &elems);
|
||||||
|
std::vector<double> split(const std::string &s, char delim);
|
||||||
|
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
int main(){
|
||||||
|
//debug_kmeans();
|
||||||
|
//debug_matrix();
|
||||||
|
debug_pca();
|
||||||
|
//debug_mds();
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*---clustering-------------------------------------------------------------*/
|
||||||
|
void debug_kmeans(){
|
||||||
|
mmatrix<double> DataMat;
|
||||||
|
std::vector<double> data;
|
||||||
|
std::string Line;
|
||||||
|
std::size_t K;
|
||||||
|
|
||||||
|
std::ifstream Input("data-test/Cluster.dat");
|
||||||
|
if(Input.is_open()){
|
||||||
|
while(std::getline(Input,Line)){
|
||||||
|
if(Line.size() != 0){
|
||||||
|
data = split(Line, ' ');
|
||||||
|
DataMat.push_back(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Input.close();
|
||||||
|
|
||||||
|
K = 4;
|
||||||
|
data_learning::clustering::kmeans<double> KMeans = data_learning::clustering::kmeans<double>(DataMat,K);
|
||||||
|
|
||||||
|
std::ofstream Output("data-test/Cls_ErrDev.dat");
|
||||||
|
std::vector<double> ErrDev = KMeans.clustering();
|
||||||
|
for(std::size_t i = 0; i < ErrDev.size(); i++){
|
||||||
|
Output << ErrDev[i] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("data-test/clustered.dat");
|
||||||
|
std::vector< mmatrix<double> > Clusters = KMeans.clusters();
|
||||||
|
for(std::size_t i = 0; i < Clusters.size(); i++){
|
||||||
|
Output << Clusters[i].to_string() << std::endl << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/*---data-mining------------------------------------------------------------*/
|
||||||
|
void debug_pca(){
|
||||||
|
mmatrix<double> DataMat, EigSpec, PrinComp, EigenVectors;
|
||||||
|
std::vector<double> data;
|
||||||
|
std::string Line;
|
||||||
|
|
||||||
|
std::ifstream Input("test_data/Hidden2.dat");
|
||||||
|
while(!Input.eof()){
|
||||||
|
std::getline(Input,Line);
|
||||||
|
data = split(Line, ' ');
|
||||||
|
if(data.size() != 0){
|
||||||
|
DataMat.push_back(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Input.close();
|
||||||
|
|
||||||
|
data_learning::mining::pca<double> PCA = data_learning::mining::pca<double>(DataMat);
|
||||||
|
|
||||||
|
unsigned EigNumb = 10;
|
||||||
|
|
||||||
|
|
||||||
|
std::ofstream Output("test_data/EigenSpectum_PCA.dat");
|
||||||
|
EigSpec = PCA.eigen_spectrum();
|
||||||
|
for(unsigned i = 0; i < EigSpec.col_size(); i++){
|
||||||
|
Output << EigSpec[0][i] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("test_data/PrincipleComponents_PCA.dat");
|
||||||
|
PrinComp = PCA.principle_components(EigNumb);
|
||||||
|
for(unsigned i = 0; i < PrinComp.row_size(); i++){
|
||||||
|
for(unsigned j = 0; j < PrinComp.col_size()-1; j++){
|
||||||
|
Output << PrinComp[i][j] << "\t";
|
||||||
|
}
|
||||||
|
Output << PrinComp[i][PrinComp.col_size()-1] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("test_data/Loadings_PCA.dat");
|
||||||
|
EigenVectors = PCA.loadings();
|
||||||
|
for(unsigned i = 0; i < EigenVectors.row_size(); i++){
|
||||||
|
for(unsigned j = 0; j < EigenVectors.col_size()-1; j++){
|
||||||
|
Output << EigenVectors[i][j] << "\t";
|
||||||
|
}
|
||||||
|
Output << EigenVectors[i][EigenVectors.col_size()-1] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
void debug_mds(){
|
||||||
|
mmatrix<double> DataMat, EigSpec, PrinComp;
|
||||||
|
std::vector<double> data;
|
||||||
|
std::string Line;
|
||||||
|
|
||||||
|
mmatrix<double>::thread(4);
|
||||||
|
|
||||||
|
std::ifstream Input("data-test/Hidden.dat");
|
||||||
|
while(!Input.eof()){
|
||||||
|
std::getline(Input,Line);
|
||||||
|
data = split(Line, ' ');
|
||||||
|
if(data.size() != 0){
|
||||||
|
DataMat.push_back(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Input.close();
|
||||||
|
|
||||||
|
data_learning::mining::mds<double> MDS = data_learning::mining::mds<double>(DataMat);
|
||||||
|
|
||||||
|
std::ofstream Output("data-test/EigenSpectum_MDS.dat");
|
||||||
|
EigSpec = MDS.eigen_spectrum(2);
|
||||||
|
for(unsigned i = 0; i < EigSpec.col_size(); i++){
|
||||||
|
Output << EigSpec[0][i] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
|
||||||
|
Output = std::ofstream("data-test/PrincipleComponents_MDS.dat");
|
||||||
|
PrinComp = MDS.principle_components(2);
|
||||||
|
for(unsigned i = 0; i < PrinComp.row_size(); i++){
|
||||||
|
for(unsigned j = 0; j < PrinComp.col_size()-1; j++){
|
||||||
|
Output << PrinComp[i][j] << "\t";
|
||||||
|
}
|
||||||
|
Output << PrinComp[i][PrinComp.col_size()-1] << std::endl;
|
||||||
|
}
|
||||||
|
Output.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
/*---Auxilliary---------------------------------------------------------------*/
|
||||||
|
|
||||||
|
|
||||||
|
void split(const std::string &s, char delim, std::vector<double> &elems){
|
||||||
|
std::stringstream ss;
|
||||||
|
ss.str(s);
|
||||||
|
std::string item;
|
||||||
|
while (std::getline(ss, item, delim)) {
|
||||||
|
if(item.empty() == false){
|
||||||
|
elems.push_back(std::stof(item));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<double> split(const std::string &s, char delim){
|
||||||
|
std::vector<double> elems;
|
||||||
|
split(s, delim, elems);
|
||||||
|
return elems;
|
||||||
|
}
|
94
test/debug_dimension.cpp
Executable file
94
test/debug_dimension.cpp
Executable file
@ -0,0 +1,94 @@
|
|||||||
|
/*===Libraries================================================================*/
|
||||||
|
#include <iostream>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#include "../src/mdimension.hpp"
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
void constructors();
|
||||||
|
void operators();
|
||||||
|
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
int main(){
|
||||||
|
constructors();
|
||||||
|
operators();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if constructors are working and modification is still possible.
|
||||||
|
*/
|
||||||
|
void constructors(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tA) Dimension Constructors \t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
mdimension DimEmpt;
|
||||||
|
std::cout << "DimHc: " << DimEmpt.to_string() << std::endl << std::endl;
|
||||||
|
mdimension DimSq1(10);
|
||||||
|
std::cout << "DimSq1(10): " << DimSq1.to_string() << std::endl << std::endl;
|
||||||
|
mdimension DimSq2(2,5);
|
||||||
|
std::cout << "DimSq2(10): " << DimSq2.to_string() << std::endl << std::endl;
|
||||||
|
mdimension DimDef;
|
||||||
|
DimDef.Row = 4;
|
||||||
|
DimDef.Col = 5;
|
||||||
|
std::cout << "DimDef: " << DimDef.to_string() << std::endl;
|
||||||
|
mdimension DimCopy(DimDef);
|
||||||
|
std::cout << "DimDCopy(DimDef): " << DimCopy.to_string() << std::endl;
|
||||||
|
DimCopy = DimSq1;
|
||||||
|
std::cout << "DimCopy = DimSq1: " << DimCopy.to_string() << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void operators(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tB) Dimension Operations \t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
mdimension DimEmpt;
|
||||||
|
mdimension DimSq(2,5);
|
||||||
|
mdimension DimDef(5,2);
|
||||||
|
mdimension DimCopy(DimDef);
|
||||||
|
|
||||||
|
|
||||||
|
std::cout << "DimEmpt: " << DimEmpt.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "DimDef: " << DimDef.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "DimSq: " << DimSq.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "DimCopy: " << DimCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tB1) Unary Operations\t\t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
DimDef.swap();
|
||||||
|
std::cout << "DimCopy.swap() = " << DimCopy.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "DimCopy.empty = " << DimCopy.empty() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
DimCopy = mdimension(DimDef);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tB2) Boolean Operations\t\t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
std::cout << "DimDef == DimCopy: " << (DimDef == DimCopy) << std::endl << std::endl;
|
||||||
|
std::cout << "DimCopy != DimEmpt: " << (DimCopy != DimEmpt) << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
DimCopy = mdimension(DimDef);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tB3) Multiplication\t\t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
DimSq.swap();
|
||||||
|
DimCopy = DimDef * DimSq;
|
||||||
|
std::cout << "DimCopy = DimDef * DimSq.swap() \n" << DimCopy.to_string() << std::endl << std::endl;
|
||||||
|
DimSq *= DimCopy;
|
||||||
|
std::cout << "DimSq *= DimCopy: \n" << DimSq.to_string() << std::endl << std::endl;
|
||||||
|
}
|
385
test/debug_matrix.cpp
Executable file
385
test/debug_matrix.cpp
Executable file
@ -0,0 +1,385 @@
|
|||||||
|
/*===Libraries================================================================*/
|
||||||
|
#include <cassert>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <iostream>
|
||||||
|
#include <omp.h>
|
||||||
|
|
||||||
|
#include "../src/mmatrix.hpp"
|
||||||
|
#include "../src/meigen.hpp"
|
||||||
|
|
||||||
|
/*===Classes-Structurres======================================================*/
|
||||||
|
|
||||||
|
/*===Variables================================================================*/
|
||||||
|
|
||||||
|
/*===Prototypes===============================================================*/
|
||||||
|
void constructors();
|
||||||
|
void memory();
|
||||||
|
void push_back();
|
||||||
|
void operators();
|
||||||
|
void static_operations();
|
||||||
|
void static_norms();
|
||||||
|
|
||||||
|
|
||||||
|
/*===Main=====================================================================*/
|
||||||
|
int main(){
|
||||||
|
mmatrix<double>::thread(omp_get_max_threads());
|
||||||
|
constructors();
|
||||||
|
memory();
|
||||||
|
push_back();
|
||||||
|
operators();
|
||||||
|
static_operations();
|
||||||
|
static_norms();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if constructors are working and modification is still possible.
|
||||||
|
*/
|
||||||
|
void constructors(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tA) Matrix Constructors \t\t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
mmatrix<double> MatrixHc = {{1,2,3},{4,5,6},{7,8,9}};
|
||||||
|
std::cout << "MatrixHc = {{1,2,3},{4,5,6},{7,8,9}}: \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
mmatrix<double> MatrixHcV = {10,11,12};
|
||||||
|
std::cout << "MatrixHcV = {1,2,3}: \n" << MatrixHcV.to_string() << std::endl << std::endl;
|
||||||
|
mmatrix<double> MatrixDef;
|
||||||
|
std::cout << "MatrixDef \n" << MatrixDef.to_string() << std::endl;
|
||||||
|
mmatrix<double> MatrixDim1(MatrixHc.size());
|
||||||
|
std::cout << "MatrixDim1(MatrixHc.size()) \n" << MatrixDim1.to_string() << std::endl << std::endl;
|
||||||
|
mmatrix<double> MatrixDim2(MatrixHc.row_size(),MatrixHc.col_size());
|
||||||
|
std::cout << "MatrixDim2(MatrixHc.row_size(),MatrixHc.col_size()) \n" << MatrixDim2.to_string() << std::endl << std::endl;
|
||||||
|
mmatrix<double> MatrixVec(MatrixHcV[0]);
|
||||||
|
std::cout << "MatrixVec(MatrixHcV[0]): \n" << MatrixVec.to_string() << std::endl << std::endl;
|
||||||
|
mmatrix<double> MatrixVecVec(MatrixHc.vector_matrix());
|
||||||
|
std::cout << "MatrixVecVec(MatrixHc.vetor_matrix()): \n" << MatrixVecVec.to_string() << std::endl << std::endl;
|
||||||
|
mmatrix<double> MatrixCopy(MatrixHc);
|
||||||
|
std::cout << "MatrixCopy(MatrixHcV): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
MatrixDef.push_back(MatrixHcV[0]);
|
||||||
|
for(auto Vec : MatrixHc){
|
||||||
|
MatrixDef.push_back(Vec);
|
||||||
|
}
|
||||||
|
std::cout << "MatrixDef[i] = MatrixHc[i] for all i: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
for(std::size_t i = 0; i < MatrixHc.row_size(); i++){
|
||||||
|
for(std::size_t j = 0; j < MatrixHc.col_size(); j++){
|
||||||
|
assert(MatrixDim1[i][j] == 0.0);
|
||||||
|
MatrixDim1[i][j] = MatrixHc[i][j];
|
||||||
|
MatrixDim2[i][j] = MatrixHc[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << "MatrixDim1,2[i][j] = MatrixHc[i][j] for all i,j: \n" << MatrixDim1.to_string() << std::endl << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void memory(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tB) Matrix Memory Functions \t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
mmatrix<double> MatrixHc = {{1,2,3},{4,5,6},{7,8,9}};
|
||||||
|
mmatrix<double> Matrix0;
|
||||||
|
std::cout << "MatrixHc: \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "Matrix0: \n" << Matrix0.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
Matrix0.resize(MatrixHc.size(),1);
|
||||||
|
std::cout << "Matrix0.resize(MatrixHc.size(),1): \n" << Matrix0.to_string() << std::endl << std::endl;
|
||||||
|
Matrix0.resize(MatrixHc.row_size()*2,MatrixHc.col_size()*2,2);
|
||||||
|
std::cout << "Matrix0.resize(MatrixHc.row_size()*2,MatrixHc.col_size()*2,2): \n" << Matrix0.to_string() << std::endl << std::endl;
|
||||||
|
Matrix0.resize(MatrixHc.row_size()-1,MatrixHc.col_size()-1,3);
|
||||||
|
std::cout << "Matrix0.resize(MatrixHc.row_size()-1,MatrixHc.col_size()-2,3): \n" << Matrix0.to_string() << std::endl << std::endl;
|
||||||
|
Matrix0.reserve(10);
|
||||||
|
std::cout << "Matrix0.reserve(10): \n" << Matrix0.to_string() << std::endl << std::endl;
|
||||||
|
Matrix0.resize(10,-1.337);
|
||||||
|
std::cout << "Matrix0.resize(10,-1.337): \n" << Matrix0.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void push_back(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tC) Matrix Matrix/Vector push_back \t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
mmatrix<double> MatrixDef;
|
||||||
|
std::vector<double> VectorVec = {1,2,3};
|
||||||
|
std::vector< std::vector<double> > VectorVecVec = {{1,2,3},{4,5,6},{7,8,9}};
|
||||||
|
|
||||||
|
std::cout << "MatrixDef: \n" << MatrixDef.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "VectorVec: \n1 2 3" << std::endl << std::endl;
|
||||||
|
std::cout << "VectorVecVec: \n1 2 3\n4 5 6\n7 8 9" << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
MatrixDef.push_back(VectorVecVec);
|
||||||
|
std::cout << "MatrixDef.push_back(VectorVecVec): \n" << MatrixDef.to_string() << std::endl << std::endl;
|
||||||
|
MatrixDef.push_back_row(VectorVec);
|
||||||
|
std::cout << "MatrixDef.push_back_row(VectorVec): \n" << MatrixDef.to_string() << std::endl << std::endl;
|
||||||
|
MatrixDef = (MatrixDef.transposition()*MatrixDef);
|
||||||
|
MatrixDef.push_back_col(VectorVecVec[2]);
|
||||||
|
std::cout << "(MatrixDef'*MatrixDef).push_back_col(VectorVecVec[2]): \n" << MatrixDef.to_string() << std::endl << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void operators(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD) Matrix Matrix/Vector Operators \t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
mmatrix<double> MatrixHc = {{1,2,3},{4,5,6},{7,8,9}};
|
||||||
|
mmatrix<double> MatrixHcV = {10,11,12};
|
||||||
|
mmatrix<double> MatrixDef;
|
||||||
|
mmatrix<double> MatrixDim(MatrixHc.size());
|
||||||
|
mmatrix<double> MatrixVec(MatrixHcV[0]);
|
||||||
|
mmatrix<double> MatrixCopy(MatrixHc);
|
||||||
|
|
||||||
|
std::vector<double> VectorVec = {1,2,3};
|
||||||
|
|
||||||
|
MatrixDef.push_back(MatrixHcV[0]);
|
||||||
|
for(auto Vec : MatrixHc){
|
||||||
|
MatrixDef.push_back(Vec);
|
||||||
|
}
|
||||||
|
|
||||||
|
for(std::size_t i = 0; i < MatrixHc.row_size(); i++){
|
||||||
|
for(std::size_t j = 0; j < MatrixHc.col_size(); j++){
|
||||||
|
assert(MatrixDim[i][j] == 0.0);
|
||||||
|
MatrixDim[i][j] = MatrixHc[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << "MatrixCopy: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixDim: \n" << MatrixDim.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixHc: \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixDef: \n" << MatrixDef.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixHcV: \n" << MatrixHcV.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixVec: \n" << MatrixVec.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "VectorVec: \n" << (char)((char)VectorVec[0]+'0') << " " << (char)((char)VectorVec[1]+'0') << " " << (char)((char)VectorVec[2]+'0') << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD1) Matrix */ Matrix Multiplication\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy = MatrixCopy * MatrixDim;
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy * MatrixDim: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy * MatrixHc;
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy * MatrixHc: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy * MatrixVec.transposition();
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy * MatrixVec': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy * MatrixCopy.transposition()/1000000;
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy * MatrixCopy'/1000000: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>(MatrixHc);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD2) Matrix */= Matrix Multiplication\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy *= MatrixDim;
|
||||||
|
std::cout << "MatrixCopy *= MatrixDim: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy *= MatrixHc;
|
||||||
|
std::cout << "MatrixCopy *= MatrixHc: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy *= MatrixVec.transposition();
|
||||||
|
std::cout << "MatrixCopy *= MatrixVec': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy *= MatrixCopy.transposition()/1000000;
|
||||||
|
std::cout << "MatrixCopy *= MatrixCopy'/1000000: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>(MatrixHc);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD3) Matrix +- Matrix Addition\t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy = MatrixCopy*MatrixCopy.transposition() + MatrixCopy*MatrixCopy.transposition();
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy*MatrixCopy' + MatrixCopy*MatrixCopy': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy+MatrixHc;
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy+MatrixHc: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy*MatrixVec.transposition()+MatrixVec.transposition();
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy*MatrixVec' + MatrixVec': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy.transposition()-MatrixVec;
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy'-MatrixVec: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy.transposition()*MatrixVec - MatrixHc;
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy'*MatrixVec - MatrixHc: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>(MatrixHc);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD4) Matrix +-= Matrix Addition\t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy += MatrixCopy.transposition();
|
||||||
|
std::cout << "MatrixCopy += MatrixCopy': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy -= MatrixCopy*MatrixCopy.transposition();
|
||||||
|
std::cout << "MatrixCopy -= MatrixCopy*MatrixCopy': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy += MatrixCopy*MatrixCopy;
|
||||||
|
std::cout << "MatrixCopy += MatrixCopy*MatrixCopy: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy -= MatrixCopy.transposition()*MatrixCopy.transposition();
|
||||||
|
std::cout << "MatrixCopy -= MatrixCopy'*MatrixCopy': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>(MatrixHc);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD5) Matrix * Vector Multiplication\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy = MatrixCopy * MatrixVec.transposition();
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy * MatrixVec': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy * MatrixVec;
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy * MatrixVec: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy * MatrixDef.transposition();
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy * MatrixDef': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy.transposition()*MatrixHc.transposition();
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy' * MatrixHc': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixHc*MatrixVec.transposition()*VectorVec;
|
||||||
|
std::cout << "MatrixHc = (MatrixCopy*MatrixVec) * VectorVec: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>(MatrixHc);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD6) Matrix *= Vector Multiplication\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy *= MatrixVec.transposition();
|
||||||
|
std::cout << "MatrixCopy *= MatrixVec': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy *= VectorVec;
|
||||||
|
std::cout << "MatrixCopy *= VectorVec: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>(MatrixHc);
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tD7) Matrix *= -or- * Matrix Entry-Multiplication\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy = MatrixCopy.entry_mult(MatrixCopy.transposition());
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy .* MatrixCopy': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = MatrixCopy.vec_entry_mult(VectorVec);
|
||||||
|
std::cout << "MatrixCopy = MatrixCopy .* VectorVec: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy.equal_entry_mult(MatrixCopy.transposition());
|
||||||
|
std::cout << "MatrixCopy .*= MatrixCopy': \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy.equal_vec_entry_mult(VectorVec);
|
||||||
|
std::cout << "MatrixCopy .*= VectorVec: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void static_operations(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tE) Static Matrix Operations\t\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
mmatrix<double> MatrixHc = {{1,2,3},{4,5,6},{7,8,9}};
|
||||||
|
mmatrix<double> MatrixVec = {1,2,3};
|
||||||
|
mmatrix<double> MatrixCopy(MatrixVec);
|
||||||
|
|
||||||
|
std::function<double (double)> function;
|
||||||
|
std::function<mmatrix<double> (mmatrix<double>)> mat_function;
|
||||||
|
|
||||||
|
std::cout << "MatrixHc: \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixVec: \n" << MatrixVec.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixCopy: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>::repmat(MatrixCopy,3,1);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::repmat(MatrixCopy,3,1): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::repmat(mmatrix<double>(MatrixCopy),3,3);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::repmat(MatrixCopy,3,1): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
function = [](double Val){return Val*Val;};
|
||||||
|
mmatrix<double>::transform(MatrixHc, function);
|
||||||
|
std::cout << "std::function<T (T)> function = [](double Val){return Val*Val}" << std::endl;
|
||||||
|
std::cout << "mmatrix::transform(MatrixHc, function): \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
mat_function = [](mmatrix<double> Mat){
|
||||||
|
for(auto iter = Mat.begin(); iter != Mat.end(); iter++){
|
||||||
|
for(auto jter = iter->begin(); jter != iter->end(); jter++){
|
||||||
|
*jter = sqrt(*jter);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return Mat;
|
||||||
|
};
|
||||||
|
mmatrix<double>::transform(MatrixHc,mat_function);
|
||||||
|
std::cout << "std::function<T (T)> mat_function = [](mmatrix<double> Val){...sqrt for each value...}" << std::endl;
|
||||||
|
std::cout << "mmatrix::transform(MatrixHc, mat_function): \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
mmatrix<double>::transform(MatrixHc.begin(),MatrixHc.end(),function);
|
||||||
|
std::cout << "mmatrix::transform(MatrixHc.begin(),MatrixHc.end(), function): \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "mmatrix::max(MatrixHc): \n" << mmatrix<double>::max(MatrixHc) << std::endl << std::endl;
|
||||||
|
std::cout << "mmatrix::min(MatrixHc): \n" << mmatrix<double>::min(MatrixHc) << std::endl << std::endl;
|
||||||
|
std::cout << "mmatrix::sum(MatrixHc): \n" << mmatrix<double>::sum(MatrixHc) << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::maxs(MatrixHc);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::maxs(MatrixHc): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::mins(MatrixHc);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::mins(MatrixHc): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::sums(MatrixHc);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::sums(MatrixHc): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>::covariance(MatrixHc);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::covariance(MatrixHc): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::gramian(MatrixHc);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::gramian(MatrixHc): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void static_norms(){
|
||||||
|
std::cout << std::endl << std::string(80,'#') << std::endl;
|
||||||
|
std::cout << "#\t\tF) Static Normalisation Operations\t\t\t #" << std::endl;
|
||||||
|
std::cout << std::string(80,'#') << std::endl << "Reset\n" << std::endl;
|
||||||
|
|
||||||
|
mmatrix<double> MatrixHc = {{1,2,3},{4,5,6},{7,8,9}};
|
||||||
|
mmatrix<double> MatrixVec = {1,2,3};
|
||||||
|
mmatrix<double> MatrixCopy(MatrixVec);
|
||||||
|
double Norm;
|
||||||
|
|
||||||
|
std::cout << "MatrixHc: \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixVec: \n" << MatrixVec.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixCopy: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>::vector_norms(MatrixHc,1);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::vector_norms(MatrixHc,1): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::vector_norms(MatrixHc,2);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::vector_norms(MatrixHc,2): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::vector_norms(MatrixHc,200);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::vector_norms(MatrixHc,200): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
Norm = mmatrix<double>::vector_norm(MatrixCopy,1);
|
||||||
|
std::cout << "Norm = mmatrix::vector_norm(MatrixCopy,1): \n" << Norm << std::endl << std::endl;
|
||||||
|
Norm = mmatrix<double>::vector_norm(MatrixCopy,2);
|
||||||
|
std::cout << "Norm = mmatrix::vector_norm(MatrixCopy,2): \n" << Norm << std::endl << std::endl;
|
||||||
|
Norm = mmatrix<double>::vector_norm(MatrixCopy,200);
|
||||||
|
std::cout << "Norm = mmatrix::vector_norm(MatrixCopy,200): \n" << Norm << std::endl << std::endl;
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>::vector_norms(MatrixHc,mmatrix<double>::euclids);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::vector_norms(MatrixHc,mmatrix::euclids): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::vector_norms(MatrixHc,mmatrix<double>::taxicaps);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::vector_norms(MatrixHc,mmatrix::taxicaps): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
Norm = mmatrix<double>::vector_norm(MatrixCopy,mmatrix<double>::taxicap);
|
||||||
|
std::cout << "Norm = mmatrix::vector_norm(MatrixCopy,mmatrix::taxicap): \n" << Norm << std::endl << std::endl;
|
||||||
|
Norm = mmatrix<double>::vector_norm(MatrixCopy,mmatrix<double>::euclid);
|
||||||
|
std::cout << "Norm = mmatrix::vector_norm(MatrixCopy,mmatrix::euclid): \n" << Norm << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = MatrixHc*2;
|
||||||
|
std::cout << "MatrixHc: \n" << MatrixHc.to_string() << std::endl << std::endl;
|
||||||
|
std::cout << "MatrixCopy: \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
MatrixCopy = mmatrix<double>::vectorwise_distance(MatrixCopy,MatrixHc,1);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::vectorwise_distance(MatrixCopy,MatrixHc,1): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
MatrixCopy = mmatrix<double>::vectorwise_distance(MatrixCopy,MatrixHc,1);
|
||||||
|
std::cout << "MatrixCopy = mmatrix::vectorwise_distance(MatrixCopy,MatrixHc,1): \n" << MatrixCopy.to_string() << std::endl << std::endl;
|
||||||
|
Norm = mmatrix<double>::distance(MatrixCopy,MatrixHc,2);
|
||||||
|
std::cout << "Norm = mmatrix::distance(MatrixCopy,MatrixHc,2): \n" << Norm << std::endl << std::endl;
|
||||||
|
|
||||||
|
std::vector< meigen<double> > Eigens = mmatrix<double>::eigen(MatrixHc,MatrixHc.col_size(),mmatrix<double>::euclid);
|
||||||
|
std::cout << "Eigen = mmatrix::eigen(MatrixHc,MatrixHc.col_size(),mmatrix::euclid):" << std::endl;
|
||||||
|
int Ctr = 0;
|
||||||
|
for(auto & Eigen : Eigens){
|
||||||
|
std::cout << "\tEigen.vector() " << Ctr << ": \n\t" << Eigen.vector().to_string() << std::endl;
|
||||||
|
std::cout << "\tEigen.value() " << Ctr++ << " \n\t" << Eigen.value() << std::endl;
|
||||||
|
}
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
40
test_data-creation/cluster.py
Executable file
40
test_data-creation/cluster.py
Executable file
@ -0,0 +1,40 @@
|
|||||||
|
import random
|
||||||
|
|
||||||
|
def random_data(nData, nDim, muVec, sigVec):
|
||||||
|
if type(muVec) != list:
|
||||||
|
muVec = [muVec]*nDim
|
||||||
|
elif len(muVec) != nDim:
|
||||||
|
pass
|
||||||
|
if type(sigVec) != list:
|
||||||
|
sigVec = [sigVec]*nDim;
|
||||||
|
elif len(muVec) != nDiM:
|
||||||
|
pass
|
||||||
|
|
||||||
|
DataPoints = []
|
||||||
|
for n in range(nData):
|
||||||
|
point = [0]*nDim
|
||||||
|
for i in range(nDim):
|
||||||
|
point[i] = random.gauss(muVec[i],sigVec[i])
|
||||||
|
DataPoints.append(point)
|
||||||
|
return DataPoints
|
||||||
|
|
||||||
|
def point_to_string(Point):
|
||||||
|
return " ".join(str(x) for x in Point)
|
||||||
|
|
||||||
|
|
||||||
|
#---MAIN-----------------------------------------------------------------------#
|
||||||
|
|
||||||
|
nData = 1000
|
||||||
|
nDim = 2
|
||||||
|
sigma = 7
|
||||||
|
Data = []
|
||||||
|
|
||||||
|
Data.extend(random_data(nData,nDim,[165,60],sigma))
|
||||||
|
#Data.extend(random_data(nData,nDim,[0,1],sigma))
|
||||||
|
#Data.extend(random_data(nData,nDim,[1,0],sigma))
|
||||||
|
Data.extend(random_data(nData,nDim,[185,80],sigma))
|
||||||
|
|
||||||
|
File = open("Cluster.dat","w")
|
||||||
|
for Point in Data:
|
||||||
|
File.write(point_to_string(Point)+"\n")
|
||||||
|
File.close()
|
167
test_data-creation/pca.py
Executable file
167
test_data-creation/pca.py
Executable file
@ -0,0 +1,167 @@
|
|||||||
|
import math,random
|
||||||
|
from numpy import matrix as mat
|
||||||
|
|
||||||
|
def point_to_string(Point):
|
||||||
|
return " ".join(str(x) for x in Point)
|
||||||
|
|
||||||
|
def rotation(Point,Degree):
|
||||||
|
if type(Point) != list:
|
||||||
|
return Point
|
||||||
|
if type(Degree) != list:
|
||||||
|
Degree = [math.radians(Degree)]*len(Point);
|
||||||
|
elif len(Point) != len(Degree) and len(Degree) != 3:
|
||||||
|
return Point
|
||||||
|
for i in range(len(Degree)):
|
||||||
|
Degree[i] = math.radians(Degree[i])
|
||||||
|
RotX = mat(([1,0,0],[0,math.cos(Degree[0]),-math.sin(Degree[0])],[0,math.sin(Degree[0]),math.cos(Degree[0])]))
|
||||||
|
RotY = mat(([math.cos(Degree[0]),0,math.sin(Degree[0])],[0,1,0],[-math.sin(Degree[0]),0,math.cos(Degree[0])]))
|
||||||
|
RotZ = mat(([math.cos(Degree[0]),-math.sin(Degree[0]),0],[math.sin(Degree[0]),math.cos(Degree[0]),0],[0,0,1]))
|
||||||
|
return (Point*(RotZ*RotY*RotX)).tolist()[0]
|
||||||
|
|
||||||
|
#===MAIN=======================================================================#
|
||||||
|
nDataPart = 100;
|
||||||
|
nDim = 10
|
||||||
|
DataPoints = []
|
||||||
|
rotDeg = 45;
|
||||||
|
|
||||||
|
#--- d ------------------------------------------------------------------------#
|
||||||
|
xOff = 0;
|
||||||
|
yOff = 0;
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([xOff,yOff,0],rotDeg));
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point)
|
||||||
|
yOff = 0;
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart/1.5;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([-0.1*math.cos(yOff)+(1/13)+1e-3+xOff,0.3*math.sin(yOff)+math.sin(1/4),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([-0.1*math.cos(yOff)+(1/13)+1e-3+xOff,-0.3*math.sin(yOff)+math.sin(1/4),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#--- a ------------------------------------------------------------------------#
|
||||||
|
xOff += 3e-2
|
||||||
|
yOff = 0;
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart/2;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
#Point.append(random.random())
|
||||||
|
Point.extend(rotation([xOff,yOff,0],rotDeg));
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
#Point.append(random.random())
|
||||||
|
DataPoints.append(Point)
|
||||||
|
yOff = 0;
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart/1.5;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
#Point.append(random.random())
|
||||||
|
Point.extend(rotation([-0.1*math.cos(yOff)+(1/13)+1e-3+xOff,0.3*math.sin(yOff)+math.sin(1/4),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
#Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([-0.1*math.cos(yOff)+(1/13)+1e-3+xOff,-0.3*math.sin(yOff)+math.sin(1/4),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
|
||||||
|
#--- t ------------------------------------------------------------------------#
|
||||||
|
xOff += 3e-2
|
||||||
|
xOff -= 1.2e-2
|
||||||
|
yOff = 0.025;
|
||||||
|
tickOff = xOff- 3e-2/4
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart/1.25;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([xOff,yOff,0],rotDeg));
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point)
|
||||||
|
yOff = 0.55;
|
||||||
|
for i in range(nDataPart):
|
||||||
|
tickOff += 3e-2/nDataPart/2;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([tickOff,yOff,0],rotDeg));
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point)
|
||||||
|
yOff = 0.75;
|
||||||
|
xOff += 0.7e-2
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([-7e-3*math.sin(yOff)+xOff,-7e-2*math.cos(yOff),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([7e-3*math.sin(yOff)+xOff-8e-3,-7e-2*math.cos(yOff),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
xOff -= 0.7e-2
|
||||||
|
xOff += 1.2e-2
|
||||||
|
|
||||||
|
#--- a ------------------------------------------------------------------------#
|
||||||
|
xOff += 3e-2
|
||||||
|
yOff = 0;
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart/2;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([xOff,yOff,0],rotDeg));
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point)
|
||||||
|
yOff = 0;
|
||||||
|
for i in range(nDataPart):
|
||||||
|
yOff += 1/nDataPart/1.5;
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([-0.1*math.cos(yOff)+(1/13)+1e-3+xOff,0.3*math.sin(yOff)+math.sin(1/4),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
Point = []
|
||||||
|
#for p in range(2):
|
||||||
|
# Point.append(random.random())
|
||||||
|
Point.extend(rotation([-0.1*math.cos(yOff)+(1/13)+1e-3+xOff,-0.3*math.sin(yOff)+math.sin(1/4),0],rotDeg))
|
||||||
|
#for p in range(nDim-2-3):
|
||||||
|
# Point.append(random.random())
|
||||||
|
DataPoints.append(Point);
|
||||||
|
|
||||||
|
File = open("Hidden.dat","w")
|
||||||
|
for Point in DataPoints:
|
||||||
|
File.write(point_to_string(Point)+"\n")
|
||||||
|
File.close()
|
8
test_data/.Rhistory
Executable file
8
test_data/.Rhistory
Executable file
@ -0,0 +1,8 @@
|
|||||||
|
setwd("~/Projekte/data-learning/test_data")
|
||||||
|
data = read.table("PrincipleComponents_PCA.dat",header=FALSE)
|
||||||
|
plot(data$V1,data$V2)
|
||||||
|
data = read.table("PrincipleComponents_PCA.dat",header=FALSE)
|
||||||
|
plot(data$V1,data$V2)
|
||||||
|
data = read.table("PrincipleComponents_PCA.dat",header=FALSE)
|
||||||
|
plot(data$V1,data$V2)
|
||||||
|
plot(data$V1,data$V2)
|
20000
test_data/Cluster.dat
Executable file
20000
test_data/Cluster.dat
Executable file
File diff suppressed because it is too large
Load Diff
1300
test_data/Hidden.dat
Executable file
1300
test_data/Hidden.dat
Executable file
File diff suppressed because it is too large
Load Diff
1130
test_data/Hidden1.dat
Executable file
1130
test_data/Hidden1.dat
Executable file
File diff suppressed because it is too large
Load Diff
2628
test_data/Hidden2.dat
Executable file
2628
test_data/Hidden2.dat
Executable file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user